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Quantum Computing Excitement

€he New York imes

Yale Professors Race Google and
IBM to the First Quantum Computer
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More Quantum Computing Excitement

October 16,2017 THE WALL STREET JOURNAL.

THE FUTURE OF EVERYTHING

How Google’s Quantum Compufer Could

Change the World

The ultra-powerful machine has the potential to disrupt everything from science and medicine to national
security—assuming it works
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Quantum Computing Excitement Has Reached the U.S. Congress
June 8, 2018 GIZMODO

Two Quantum Computing Bills Are Coming to
Congress

Ryan F. Mandelbaum
QUANTUM COMPUTING v

Flickr
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A Classical Take on Quantum Computing

Marcus Aurelius on Quantum Computing:

Anything in any way beautiful
derives its beauty from itself and

asks nothing beyond itself. Praise
IS no part of it, for nothing is made
worse or better by praise.
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A Quantum Take on Quantum Computing

Feynman was one of the originators of the idea...

Trying to find a computer simulation of physics seems
to me to be an excellent program to follow out

the real use of it would be with quantum mechanics

Nature isn’t classical . . . and if you want to make a
- simulation of Nature, you’d better make it quantum
WAV mechanical, and by golly it's a wonderful problem,
,/{J N ‘beoause it doesn’t look so easy.
< 1981
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Quantum Information

n classical 2-state systems: n bits of information
b;... b,

n quantum 2-state systems: 2" “bits” of information /T\ /T\ /T\ /‘f
a; ... a,where k=2n CACACITAC

9b) = a1]0...00) +az]0...01) +asl0...10) + ...+ a|l...11)

2L Fermilab

7 6/20/18 Amundson | Quantum Computing



Where the Excitement Started
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improvements have been made

in the meantime. ]
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Theoretical Computer Science

+ Classical Computing

— “Easy” problems can be solved in “polynomial
time” (P)

— “Hard” problems require “nondeterministic
polynomial time” (NP)

« Proving P # NP is a great unsolved problem in
computer science

* Quantum Computing

— Some problems are easy in quantum computing,
but hard in classical computing

— Some problems appear to be hard either way
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Quantum Algorithms

« Shor’s Algorithm: factorization
— Speedup: Superpolynomial

» Grover’s Algorithm: search
— Speedup: Polynomial

« Many more available at the Quantum Algorithm Zoo
— https://math.nist.gov/quantum/zoo/

2L Fermilab
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Current and Near-term Quantum Hardware
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« Thanks to Andy Li
— Fermilab Scientific
Computing Division’s first
quantum computing
postdoc!

many
more
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Current Commercial Quantum Computing Efforts

« Many companies have announced that they have produced small quantum

12

computers in the 5-72 qubit range

Google

IBM

Intel

Rigetti

lonQ

Other companies...
Academic efforts...
D-Wave

* Quantum Annealing machine
— Subject of a much longer talk
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Counting Qubits is Only the Beginning
+ The number of gates that can be applied From the earlier factoring estimate
before losing quantum coherence is the

limiting factor for most applications
— Current estimates run few — thousand qubits 5124 10244 20484

— Not all gates are the same
J . | gates  3x1010  2x10"  2x10%2
* The real world is complicated

» |IBM has a paper proposing a definition of _ o _
“Quantum Volume” » “Logical qubits” incorporating error

— Everyone else seems to dislike the particular correction are the goal
definition — Probably require ~1000 qubits per

— The machines with the largest number of logical qubit

qubits are unlikely to have the largest * Minimum fidelity for constituent qubits
quantum volume is the current goalpost

2L Fermilab
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Fermilab Quantum Efforts

« Fermilab has a mixture of on-going and proposed work in quantum computing in
four areas:
— Quantum Computing for Fermilab Science
— HEP Technology for Quantum Computing
— Quantum Technology for HEP Experiments
— Quantum Networking

2L Fermilab

14 6/20/18 Amundson | Quantum Computing



Quantum Computing for Fermilab Science

« Quantum Computing will require the sort of infrastructure Fermilab already provides for
classical computing
— HEPCloud will extend to Quantum Computing
— On-going testbed effort in collaboration with Google
» Partially funded by Fermilab LDRD

« Three promising areas for quantum applications in the HEP realm
— Optimization
« Area under active investigation in the quantum world
* NP-hard problems
* Quantum Approximate Optimization Algorithm (QAQOA)
— Farhi, Goldstone and Gutmann
— Machine Learning
« Computationally intensive
» Also under active investigation in the quantum world
— Quantum Simulation
« Good reason to believe that quantum systems should be well-suited to quantum computation

2L Fermilab
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Fermilab Quantum Application Efforts

« Quantum Optimization and Machine Learning
— Proposed work by Gabe Purdue, et al.
* Quantum Information Science for Applied Quantum Field Theory
— Marcela Carena, et al., including y.t. (yours truly)
— Scientific Computing Division/Theory Department collaboration
» Also includes University of Washington and California Institute of Technology
— First effort: Digital quantum computation of fermion-boson interacting systems

2L Fermilab
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Successful Quantum Simulation
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« Quantum Chemistry has the first big successes in quantum
simulation. O pe ‘ n>‘AN<
« GitHub has a project for general simulations of interacting
fermions. F rmIOn

- However, interesting HEP systems, e.g., QCD, also require "ts/github.com/quantumiib/OpenFermion
boson-fermion interactions.

2L Fermilab
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Digital quantum computation of fermion-boson interacting systems

0 05 1 15 2 25 30 05 1 15 2 25 3
- Previous encoding schemes for bosons on quantum 1~ 2"
computers had errors of O(Noccupation/Nqubits) o ’ s
» Alexandru Macridin, Panagiotis Spentzouris, James o 0=g'12 0 -
Amundson, Roni Harnik 0]t - 0c02
— Digital quantum computation of fermion-boson interacting &o21 s
systems °‘1iﬁ/ﬂ"; T ettt
- arXiv:1805.09928 R S e R
» Accurate and efficient simulation of fermion-boson FIG. 4. n. 6 qubits per HO. The energy (a) and quasiparti-

systems; simple enough for use on near-term hardware

cle weight (b) for the 2-site Holstein polaron versus coupling
strength. (¢) The phonon number distribution for different

couplings. The open (full) symbols are computed using exact

- EIeCtron-Phonon SyStemS ona Unlversal Quantum diagonalization (QPE algorithm on a quantum simulator).

Computer
- arXiv:1802.07347

» First application was to polarons — electron dressed by
phonons. Cross-disciplinary interest.
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FIG. 3. Circuit for exp(—ifc/ciX,)|i) ® |z,). The phase
shift angle is 0(zn — Np/2) = 0 3025 232" — 62"~ where
{2}, =57, =7 take binary values.
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HEP TeChnOIOQV fOr Quantum Computing SRF resonators

PA

« Ultra-High Q Superconducting Acceleratorie® —— ; ; ,
Cavities for Orders of Magnitude 10" T2 N 20 Cavitos: Mo
Improvement in Qubit Coherence 107 /

T ERTT® G -

— Alex Romanenko, et al.
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* Novel Cold Instrumentation Electronics for 2000 2008 2010 2015

Quantum Information Systems
— Davide Braga, et al.

2L Fermilab
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Quantum Technology for HEP Experiments

Sensor concept

« Skipper-CCD: new single photon
sensor for quantum imaging

« Quantum Metrology Techniques for
Axion Dark Matter Detection

20

Matter-wave Atomic Gradiometer

Interferometric Sensor
(MAGIS-100)
— Robert Plunkett, et al.

— Juan Estrada, et al.

— Aaron Chou, et al.
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Quantum Networking

* Quantum Networking is outside the scope of this talk
— We are working on it at Fermilab, in collaboration with the California Institute of Technology

— Quantum Communication Channels for Fundamental Physics
» Maria Spiropulu, et al. (California Institute of Technology)

2L Fermilab
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Conclusions

* Quantum computing holds the promise of remarkable new computational
capabilities
— The future is not here yet
* ... but we are getting there
« Fermilab has quantum computing efforts on many fronts
— Quantum Applications
— HEP technology for QC
— QC technology for HEP experiments
— Quantum Networking
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